Mohawk Local School DistrictPre-Calculus; Quarter 1-4

Curriculum Map & Pacing Guide

Topic/Lessons	Current-Standard/Indicator	Future- Standard/ Indicator	Activities to Support	Assessment	
Sections 1-2 (Analyzing Graphs of Functions and Relations), 1-4 (Extrema and Average Rates of Change), 2-2 (Polynomial Funcitions)	Identify the maximum and minimum points of polynomial, rational and trigonometric functions graphically and with technology.	11-D-4			
Sections 2-2 (Polynomial Functions), 2-4 (Zeros of Polynomial Functions)	Describe and compare the characteristics of transcendental and periodic functions; e.g., general shape, number of roots, domain and range, asymptotic behavior, extrema, local and global behavior.	12-D-3			
Section 1-2 (Analyzing Graphs of Functions and Relations)	Identify families of functions with graphs that have rotation symmetry or reflection symmetry about the <i>y</i> -axis, <i>x</i> -axis or $y = x$.	11-D-5			
Section 2-1 (Power and Radical Functions)	Solve equations involving radical expressions and complex roots.	11-D-8			

Section 1-2 (Analyzing Graphs of Functions and Relations), 1-7 (Inverse Relations and Functions)	Represent the inverse of a function symbolically and graphically as a reflection about $y = x$.	11-D-6		
Chapter 1 throughout (Functions From a Calculus Perspective)	Describe and compare the characteristics of the following families of functions: quadratics with complex roots, polynomials of any degree, logarithms, and rational functions; e.g., general shape, number of roots, domain and range, asymptotic behavior.	11-D-3		
Quarter 2				
Section 3-1 (Exponential Functions), 3-2 (Logarithmic Functions)	Represent the inverse of a transcendental function symbolically.	12-D-4		
Section 4-3 (Trigonometric Functions on the Unit Circle), 4-5 Graphing Other Trig Functions), 4-7 (The Law of Sines and the Law of Cosines), 5-4 (Sum and Difference Identities)	Derive and apply the basic trigonometric identities; i.e., angle addition, angle subtraction and double angle.	12-C-2		
Section 4-2 (Degrees and Radians)	Use radian and degree angle measures to solve problems and perform conversions as needed.	11-B-2		

Section 4-7 (The Law of Sines and Cosines)	Use trigonometric relationships to determine lengths and angle measures; i.e., Law of Sines and Law of Cosines.	11-C-4		
Section 4-1 (Right Triangle Trig), 4-2 (Degrees and Radians)	Use trigonometric relationships to determine lengths and angle measures; i.e., Law of Sines and Law of Cosines.	12-B-2		
Chapter 5 (Trig Identities and Equations)	Derive and apply the basic trigonometric identities; i.e., angle addition, angle subtraction and double angle.	12-C-2		
Quarter 3		44 D 7		
(Multivariable Linear Systems and Row Operations), 6-2 (Matrix Multiplication, Inverses, and Determinants), 6-3 (Solving Linear Systems), 8-1 Intro to Vectors), 8-2 (Vectors in the Coordinate Plane)	matrices and vectors.	11-0-7		
Section 9-3 (Polar and Rectangular Forms of Equations)	Translate freely between polar and Cartesian coordinate systems.	12-D-9		
Section 8-1 (Intro to Vectors)	Determine what properties hold for vector addition and multiplication, and for scalar multiplication.	11-A-2		
Section 8-2 (Vectors in the Coordinate Plane)	Model, using the coordinate plane, vector addition and scalar multiplication.	11-A-5		

Section 8-1 (Intro	Use vector addition and scalar	11-A-9	Supplemental Worksheet	
to Vectors), 8-2	multiplication to solve problems.			
(Vectors in the				
Coordinate Plane)				
Section 9-2	Use polar coordinates to specify	11-C-1		
(Graphs of Polar	locations on a plane.			
Equations), 9-3				
(Polar and				
Rectangular				
Forms of				
Equations)				
Section 8-2	Represent translations using vectors.	11-C-2		
(Vectors in the				
Coordinate Plane)				
Section 8-1	Describe multiplication of a vector	11-C-3	Supplemental Worksheet	
(Introduction to	and a scalar graphically and			
Vectors)	algebraically, and apply to problem			
	situations.			
Section 6-1	Set up and solve systems of equations	12-D-5	Use TI-84 generated smart	
(Linear Systems	using matrices and graphs, with and		board application.	
and Row	without technology.			
Operations), 6-2				
(Matrix				
Multiplication,				
Inverses and				
Determinants)				
Quarter 4				
Section 10-5 (The	Apply combinations as a method to	12-A-2		
Binomial	create coefficients for the Binomial			
Theorem)	Theorem, and make connections to			
	everyday and workplace problem			
	situations.			
Section 12-5 (The	Apply informal concepts of successive	12-B-3		
Area Under a	approximation, upper and lower			
Curve and	bounds, and limits in measurement			
Integration)	situations; e.g., measurement of some			
	quantities, such as volume of a cone,			
	can be determined by sequences of			
	increasingly accurate approximations.			

Section 10-1 (Sequence, Series and Sigma Notation), 10-2 (Arithmetic Sequences and Series), 10-3 (Geometric Sequences and Series), 10-6 (Functions as Infinite Series)	Analyze the behavior of arithmetic and geometric sequences and series as the number of terms increases.	12-D-1		
Section 10-1 (Sequence, Series, and Sigma Notation), 10-2 (Arithmetic Sequence and Series), 10-3 (Geometric Sequence and Series)	symbolic form of a sequence or series.	12-D-2		
Section 12-5 (Area Under a Curve and Integration), 12-6 (The Fundamental Theorem of Calculus)	Compare estimates of the area under a curve over a bounded interval by partitioning the region with rectangles; e.g., make successive estimates using progressively smaller rectangles.	12-D-8		
Section 11-1 (Descriptive Statistics)	Translate a recursive function into a closed form expression or formula for the nth term to solve a problem situation involving an iterative process; e.g., find the value of an annuity after 7 years.	11-D-2		

Section 12-6 (The	Describe and compare the	12-D-3		
Fundamental	characteristics of transcendental and			
Theorem of	periodic functions; e.g., general shape,			
Calculus)	number of roots, domain and range,			
	asymptotic behavior, extrema, local			
	and global behavior.			